Prof. Hiroshi
Fujii's
Bioinorganic Chemistry
Laboratory
Nara Women's University
|
Publications
|
|
2023
Characterization and Reactivity of An Incredibly Reactive Intermediate
in the Protonation Reaction of Dioxo-Manganese(V) Porphyrin with Acid
Yuri Katogi, Ayano Okamoto, Mashiko Hada, and Hiroshi Fujii
ACS Catalysis. 2023 in press
DOI:10.1021/acscatal.
|
|
2022
How do the Axial and Equatrial Ligands Modulate Reactivity of
Metal-Bound Terminal Oxidant? An Answer from Hypochlorite Adduct of
Iron(III) Porphyrin
Sawako Yokota, Yuna Suzuki, Sachiko Yanagisawa, Sunsuke Nozawa, Masahiko Hada, Hiroshi Fujii*
ACS Catalysis. 2022, 12, 10857-10871. published 2022. 9. 2.
DOI:10.1021/acscatal.2c01840
|
|
2021 Rate
Limiting Step of Epoxidation Reaction of Oxoiron(IV) Porphyrin Ξ-Cation
Radical Complex: Electron Transfer Coupled Bond Formation Mechanism
Yuri Ishimizu, Zhifeng Ma, Masahiko Hada, Hiroshi Fujii*
Inorg. Chem. 2021, 60, 17687-17698. published 2021. 12. 5.
DOI:
DOI:10.1021/acs.inorgchem.1c02287
This paper was selected as a Featured Artic
Synthesis, Characterization and Reactivity of Oxoiron(IV) Porphyrin
Ξ-Cation Radical Complexes bearing Cationic N-Methyl-2-pyridinium Group
Yuna Suzuki, Masahiko Hada, Hiroshi Fujii*
J. Inorg. Biochem. 2021, 223, 111542. published 2021. 10. 1.
DOI:10.1016/j.jinorgbio.2021.111542
Significant Solvent Effetc on Reactivity of Oxoiron(IV) Porphyrin Ξ-Cation Radical Complex: Activation in n-Alkane Solvent
Kanako Ueno, Yuri Ishimizu, Hiroshi Fujii*
Inorg. Chem. 2021, 9243-9247. published 2021. 7. 5.
DOI:10.1021/acs.inorgchem.1c01018
Meso-Substitution Activates Oxoiron(IV) Porphyrin Ξ-Cation Radical
Complex More Than Pyrrole-ß -Substitution for Atom Transfer Reaction
Nami Fukui, Kanako Ueno, Masahiko Hada, and Hiroshi Fujii*
Inorg. Chem. 2021, 60, 3207-3217. published 2020. 3.1.
DOI:10.1021/acs.inorgchem.0c03548
|
|
|
2020 Unique Electronic Structures of the Highly Ruffled Hemes in
Heme-Degrading Enzymes of Staphylococcus aureus, IsdG and IsdI, by
Resonance Raman and Electron Paramagnetic Resonance Spectroscopies . Satoshi Takahashi, Shusuke Nambu, Toshitaka Matsui, Hiroshi
Fujii, Haruto Ishikawa, Yasuhisa Mizutani, Kouhei Tsumoto, Masao
Ikeda-Saito
Biochemistry 2020, 59, 3918-3928. published 2020. 10.13.
DOI:10.1021/acs.biochem.0c00731
Photo-biohydrogen Production by Photosensitization with Biologically
Precipitated Cadmium Sulfide in Hydrogen-Forming Recombinant
Escherichia coli
Yuki Honda, Yuka Shinohara, Motonori Watanabe, Tatsumi Ishihara, and Hiroshi Fujii
ChemBioChem. 2020, 21, 3389-3397. published 2020.12.1.
DOI:10.1002/cbic.202000383
Visible light-driven, external mediator-free H2 production by a
combination of a photosensitizer and a whole-cell biocatalyst:
Escherichia coli expressing [FeFe]-hydrogenase and muturase genes
Yuki Honda, Yuka Shimonhara, and Hiroshi Fujii
Catalysis Science & Technology 2020, 10, 6006-6012. published 2020.9.7.
DOI:10.1039/D0CY01099E
DFT insight into axial ligand effects on electronic structure and mechanistic reactivity of oxoiron(IV) porphyrin
Zhifeng Ma, Naoki Nakatani, Hiroshi Fujii, and Masahiko Hada
Physical Chemistry Chemical Physics. 2020, 22, 12173-12179. published 2020.7.7.
DOI:10.1039/D0CP01867H
Spectroscopic Evidence for Acid-Catalyzed Disproportionation Reaction
of Oxoiron(IV) Porphyrin to Oxoiron(IV) Porphyrin Ξ-Cation Radical and
Iron(III) Porphyrin
Kana Nishikawa, Yuki Honda, Hiroshi Fujii*
J. Am. Chem. Soc. 2020, 142, 4980-4984. published 2020/3/18
DOI: https://doi.org/10.1021/jacs.9b13503
Effect of External Electric Fields on the Oxidation Reaction of Olefins by Fe(IV)OClPorphyrin Complexes
Zhifeng Ma, Naoki Nakatani, Hiroshi Fujii, and Masahiko Hada
Bull. Chem Soc. Jpn. 2020, 93, 187-193. published 2020/2/15.
DOI:10.1246/bcsj.20190293
Dioxygen-Binding in Metalloproteins and Corresponding Models
Shinobu Itoh* and Hiroshi Fujii*
Comprehesive Coordination Chemsitry III 2020
DOI:10.1016/B978-0-12-409547-2.14904-2
|
|
2019 Small Reorganization Energy for Ligand-Centered Electron-Transfer Reduction of Compound I to Compound II in Heme Model Study
Fukui Nami, Li Xiao-Xi, Nam Wonwoo,* Fukuzumi Shunichi,* Fujii Hiroshi*
Inorg. Chem. 2019, 58, 8263-8266. DOI: 10.1021/acs.inorgchem.9b01051
Direct
Observation of Primary C–H Bond Oxidation by An Oxido-iron(IV)
Porphyrin Ξ-Radical Cation Complex in a Fluorinated Carbon Solvent
Yuma Morimoto,* Yuki, Shimaoka, Yuri, Ishimizu, Hiroshi Fujii,* and Shinobu Itoh*
Angew. Chem. Int. Ed. 2019, 58, 10863-10866. DOI: 10.1002/anie.201901608
Experimental
and Theoretical Studies of the Porphyrin Ligand Effect on the
Electronic Structure and Reactivity of Oxoiron(IV) porphyrin Ξ-Cation
Radical Complexes
Yuri Ishimizu,
Zhifeng Ma, Masahiko Hada, and Hiroshi Fujii*
J. Biol. Inrog. Chem. 2019, 24, 483-494. DOI: 10.1007/s00775-019-01664-3
Substitution Effects on Olefin Epoxidation Catalyzed by Oxoiron(IV) Porphyrin Ξ-Cation Radical Complexes: A DFT Study
Zhifeng Ma, Kasumi Ukaji, Naoki Nakatani, Hiroshi Fujii, and Masahiko Hada,
J. Cmput. Chem. 2019, 40, 1780-1788. DOI: 10.1002/jcc.25831
Site-Selective Supramolecular Complexation Activates Catalytic
Ethane-Oxidation of m-Nitrido-Bridged Iron Porphyrinoid Dimer
Yasuyuki Yamada, Nozomi Mihara, Hikaru Takaya, Yasutaka Kitagawa,
Kazunobu Igawa, Katsuhiko Tomooka Hiroshi Fujii, and Kentaro Tanaka
Chem. Eur. J. 2019, 25, 3369-3375. DOI: 10.1002/chem.201805580
|
|
2018
Coexpression of 5-aminolevulinic Acid Synthase
Gene Facilitates
Heterologous Production of Thermostable@Cytochrome P450, CYP119, in
Holo Form in Escherichia coli
Yuki Honda, Ki Nanasawa, and Hiroshi Fujii
ChemBioChem 2018, 19, 2156-2159. DOI: 10.1002/cbic.201800331
Critical Factors in Determining the Heterolytic
versus Homolytic Bond Cleavage of Terminal Oxidants by Iron(III)
Porphyrin Complexes
Sawako Yokota and Hiroshi Fujii*
J. Am. Chem. Soc. 2018, 140, 5127-5137. DOI: 10.1021/jacs.7b13037
Preparation, Characterization and Reactivity of
a Bis-Hypochlorite Adduct of a Chiral Manganese(IV)-Salen Complex
Ikuko Araki, Kaoru Fukui, and Hiroshi Fujii*
Inorg. Chem. 2018, 57, 1685-1688. DOI: 10.1021/acs.inorgchem.7b02661
|
|
|
2016
Participation of Electron-Transfer Process in Rate-Limiting Step of
Aromatic Hydroxylation Reactions by Compound I Models of Heme Enzymes
Maaya Asaka and Hiroshi Fujii*
J. Am. Chem. Soc. 2016, 138, 8048-8051.
Unique coupling of mono- and dioxygenase chemistries in a single active
site promotes heme degradation
Toshitaka Matsui, Shusuke Nambu, Celia W. Goulding, Satoshi Takahashi,
Hiroshi Fujii, and Masao Ikeda- Saito
Proc. Natl. Acad. Sci. USA 2016, 113, 3779-3784.
The Functional Role of the structure of the Dioxo-isobacteriochlorin
Structure in the Catalytic Site of Cytochrome cd1
for the Reduction of
Nitrite
Hiroshi Fujii*, Daisuke Yamaki, Takashi Ogura, and Masahiko Hada
Chem. Sci. 2016, 7, 2896-2906.
The Origin of Relative Stability of Di-Κ-oxo M-M Chiral Salen Complexes
[M-M = Ti (IV)-Ti(IV), V(IV)-V(IV), Cr(IV)-Cr(IV) and Mn(IV)-Mn(IV)]: A
Quantum-Chemical Analysis
Radhika Narayanan, Archana Velloth, Takuya Kurahashi, Hiroshi Fujii,
Masahiko Hada*
Bull. Chem. Soc. Jp. 2016, 89, 447-454.
|
|
2015
Model Complexes of Heme Peroxidases
Hiroshi Fujii
"Heme Peroxidases", Ed. Emma Ravan and Brian Dunford, RSC
Chapter 9, pp 181-217 |
|
2014
Factors Affecting Hydrogen-Tunneling Contribution in Hydroxylation
Reactions Promoted by Oxoiron(IV) Porphyrin Ξ-Cation Radical Complexes
Zhiqi Cong, Haruki Kinemuchi, Takuya Kurahashi, and Hiroshi Fujii*
Inorg. Chem. 2014, 53, 10632-10641.
Theoretical Study of One-Electron- Oxidized Mn(III)- and Ni(II)-Salen
Complexes: Localized vs. Delocalized Ground and Excited States in
Solution
Shinji Aono, Masayuki Nakagaki, Takuya Kurahashi, Hiroshi Fujii, and
Shigeyoshi Sakaki
J. Chem. Theory and Comput. 2014, 10, 1062-1073
Di-µ-Oxo Dimetal Core of MnIV and TiIV
as a Linker Between Two Chiral
Salen Complexes Leading to the Stereoselective Formation of Different
M- and P-Helical Structure
Takuya Kurahashi, Masahiko Hada, and Hiroshi Fujii*
Inorg. Chem. 2014, 53, 1070-1079 |
|
2013
Oxygen-Atom Transfer from Iodosylarene Adducts of a Manganese(IV) Salen
Complex: Effect of Arenes and Anions on I(III) of the Coordinated
Iodosylarene
Chunlan Wang, Takuya Kurahashi, Kensuke Inomata, Masahiko Hada, and
Hiroshi Fujii*
Inorg. Chem. 2013, 52, 9557-9566.
Unique Ligand-Radical Character of an Activated Cobalt Salen
Catalyst that is Generated by Aerobic Oxidation of a Cobalt(II) Salen
Complex
Takuya Kurahashi and Hiroshi Fujii*
Inorg. Chem. 2013, 52, 3908-3919. |
|
2012
Synthesis, Characterization, and Reactivity of Hypochloritoiron(III)
Porphyrin Complexes
Zhiqi Cong, Sachiko Yanagisawa, Takuya Kurahashi, Takashi Ogura, Satoru
Nakashima, and Hiroshi Fujii*
J. Am. Chem. Soc. 2012, 134, 20617-20620.
Comparative Spectroscopic Studies of Iron(III) and Manganese(III)
Salen Complexes Having a Weakly Coordinating Triflate Axial Ligand
Takuya Kurahashi and Hiroshi Fujii*
Bull. Chem. Soc. Jpn. 2012, 85, 940-947.
(BCSJ Award Article)
Structure and Reactivity of an Iodosylarene Adduct of a
Manganese(IV)-Salen Complex
Chunlan Wang, Takuya Kurahashi, and Hiroshi Fujii*
Angew. Chemie. Int. Ed. 2012, 51, 7809-7811.
Effect of the Axial Ligand on the Reactivity of the Oxoiron(IV)
Porphyrin Ξ-Cation Radical Complex: Higher Stabilization of the Product
State Relative to the Reactant State
Akihiro Takahashi, Daisuke Yamaki, Kenichiro Ikemura, Takuya Kurahashi,
Takashi Ogura, Masahiko Hada, and Hiroshi Fujii*
Inorg. Chem. 2012, 51, 7296-7305.
Coordination and Electronic Structure of
Ruthenium(II)-tris-2,2'-bipyridine in the Triplet Metal-to-Ligand
Charge-Transfer Excited State Observed by Picosecond Time-Resolved Ru
K-Edge XAFS
Tokushi Sato*, Shunsuke Nozawa, Ayana Tomita, Manabu Hoshino, Shin-ya
Koshihara, Hiroshi Fujii, and Sin-ichi Adachi
J. Phys. Chem. C, 2012, 116, 14232-14236.
Formation of Iron(III) meso-Chloro-isoporphyrin as a Reactive
Chlorinating Agent from Oxoiron(IV) Porphyrin Ξ-Cation Radical
Zhiqi Cong, Takuya Kurahashi, and Hiroshi Fujii*
J. Am. Chem. Soc. 2012, 134, 4469-4472.
Solid-state 17O NMR and computational
studies of terminal transition
metal oxo compounds
Jianfeng Zhu, Takuya Kurahashi, Hiroshi Fujii, and Gang Wu*
Chem. Sci. 2012, 3, 391-397. |
|
2011
Oxidation of Chloride and Subsequent Chlorination of Organic Compounds
by Oxoiron(IV) Porphyrin Ξ-Cation Radicals
Zhiqi Cong, Takuya Kurahashi, and Hiroshi Fujii*
Angew. Chemie. Int. Ed. 2011, 50, 9935-9939.
Redox Potentials of Oxoiron(IV) Porphyrin Ξ-Cation Radical
Complexes: Participation of Electron Transfer Process in Oxygenation
Reactions
Akihiro Takahashi, Takuya Kurahashi, and Hiroshi Fujii*
Inorg. Chem. 2011, 50, 6922-6928.
One-Electron Oxidation of Electronically Diverse Manganese(III)
and Nickel(II) Salen Complexes: Transition from Localized to
Delocalized Mixed-Valence Ligand Radicals
Takuya Kurahashi and Hiroshi Fujii*
J. Am. Chem. Soc. 2011, 133, 8307-8316. |
|
2010
Unique Properties and Reactivity of High-Valent Manganese-Oxo versus
Manganese-Hydroxo in the Salen Platform
Takuya Kurahashi, Akihiro Kikuchi, Yoshitsugu Shiro, Masahiko Hada, and
Hiroshi Fujii*
Inorg. Chem. 2010, 49, 6664-6672.
Resonance Raman Study of a High-valent Fe=O Porphyrin Complex as a
Model for Peroxidase Compound II
Hirohito Ishimaru, Hiroshi Fujii, and Takashi Ogura*
Chemistry Letters 2010, 39, 332-333.
Direct Probing of Spin State Dynamics Coupled with Electronic and
Structural Modifications by Picosecond Time-Resolved XAFS
Shunsuke Nozawa*, Tokushi Sato, Matthieu Chollet, Kouhei Ichiyanagi,
Ayana Tomita, Hiroshi Fujii, Shin-ichi Adachi, and Shin-ya Koshihara
J. Am. Chem. Soc. 2010, 132, 61-63.
Paramagnetic 13C and 15N
NMR Analyses of the Push and Pull
Effects in Cytochrome c Peroxidase and Coprinus cinereus Peroxidase
Variants: Functional Roles of Highly Conserved Amino Acids around Heme
Daisuke Nonaka, Hiroyuki Wariishi, Karen G. Welinder, and Hiroshi Fujii*
Biochemistry 2010, 49, 49-57. |
|
@ |