CHEMISTRY A EUROPEAN JOURNAL 17/38 2011

Au4Ag2Cu2 Coinage Ring Capturing a BF4 Anion C BF₄ AgX, CuX PhE Ph

Coinage clusters...

...with octanuclear $\{Au_{2}^{l}Ag_{2}^{l}Cu_{3}^{l}\}^{2}$ rings were synthesized with a flexible tetraphosphine ligand, via a dinuclear Au^l intermediate. Through a stepwise construction, the Ag^l ions in the ring are replaced by Cu^l and Au^l ions to afford a series of $\{Au_{2}^{l}M_{2}^{l}Cu_{3}^{l}\}^{2}$ rings (M = Au^l, Ag^l, Cu^l), in which the ring shape and size as well as luminous properties are finely modulated by the M element. For more details see the Communication by T. Tanase et al. on page 10528 ff.

WILEY-VCH

www.chemeurj.org

A Journal of

ChemPubSoc

Supported by

ACES

Europe

IYC 2011

CHEMISTRY

Inside Cover

Yukie Takemura, Tomoko Nishida, Bunsho Kure, Takayuki Nakajima, Masayasu Iida, and Tomoaki Tanase*

Coinage clusters...

...with octanuclear { $Au_2^l Ag_1^l Cu_1^l$? rings were synthesized with a flexible tetraphosphine ligand, via a dinuclear Au_1^l intermediate. Through a stepwise construction, the Ag_1^l ions in the ring are replaced by Cu^l and Au^l ions to afford a series of { $Au_2^l M^l Cu_1^l$? rings ($M = Au_1^l$, Ag_1^l , Cu^l), in which the ring shape and size as well as luminous properties are finely modulated by the M element. For more details see the Communication by T. Tanase et al. on page 10528 ff.

