Bioinorganic Chemistry

Nitrogenase Fixing Dinitrogen

- Metal Clusters in Biology -

Main Elements in Biology

Reduction of Dinitrogen into Ammonia

 $N_2 + 3H_2 \rightarrow 2NH_3$ $G^0 = -33.2 \text{ kJ/mol}$

Haber-Bosch process: cat. Fe₃O₄/sa Al₂O₃, 200-1000 atm, 200-500 °C

Chemical Forms and Cycle of Nitrogen

P. O'Neill, 'Environmetal Chemistry', George, Allen, and Unwin, London, 1985

Biological Nitrogen Cycle

Nitrogen Fixation from Air

Nitrogenase Complex

$$N_2 + 8H^+ + 8e^- + 16MgATP \longrightarrow 2NH_3 + H_2 + 16MgADP + 16P_i$$

 $G^0 = -65.6 \text{ kJ/mol}$

Electron Shuttles in Nitrogenase

Iron-Sulfur Clusters

Rubredoxin (Rb)

Ferredoxin [2Fe-2S]

Classification of Ferredoxins [4Fe-4S], [3Fe-4S]

Probable Evolutionary Process of Bacterial Ferredoxins

X-ray Crystal Structures of Ferredoxin from *P. asaccbarolyticus* (PaFd)

The most ancestral and popular type of Fds with 2 x [4Fe-4S] clusters.

 $-XC_8XXC_{11}XXC_{14}XXXC_{18}-\cdots-XC_{35}XXC_{38}XXC_{41}XXXC_{45}-$

Structure and Property of [4Fe-4S] Core

X-ray Crystal Structures of Azotobacter Ferredoxin (AvFd) from A. vinelandi

Structures and Properties of [4Fe-4S] and [3Fe-4S] Cores of AvFd

Redox Potentials of Iron-Sulfur Proteins

protein	typical origin	type of Fe/S center	E (mV)
Rd	<i>Clostridium</i>	[Fe] ^{3+/2+}	-60
2Fe Fd	spinach	$[Fe_2S_2]^{2+/1+}$	-420
Rieske center	adrenal mitochondria	$[Fe_2S_2]^{2+/1+}$	+280
4Fe Fd	Bacillus staarotharmonhilus	$[Fe_4S_4]^{2+/1+}$	-280
8Fe Fd	Clostridium	$[Fe_4S_4]^{2+/1+}$	-400
Fd II	D. gigas	$[Fe_3S_4]^{1+/0}$	-130
Fd I	Azotovacter	$[Fe_3S_4]^{1+/0}$	-450
HiPIP	vinelandii Chromatium vinosum	$[Fe_4S_4]^{2+/1+}$ $[Fe_4S_4]^{2+/3+}$	-650 +350

Rd = rubredoxin, Fd = ferredoxin, HiPIP = high potential iron-sulfur protein

Hydrophobicity and Hydrogen Bonding Effects on [4Fe-4S] Centers

Clostridium pasteurianum

Chromatium vinosum

Synthetic Model Compounds

X-ray Structure of $(Et_4N)_2[Fe_2S_2(o-(SCH_2)_2Ph)_2]$

Azotobacter vinelandii Nitrogenase Complex

A Half Unit of Av Nitrogenase Complex

Structure of Av Fe protein

Structural Change of Av Fe Protein with Binding of Mg·ADP·AlF4-

Structural Change around the [4Fe-4S] Center of Av Fe Protein with Binding of Mg·ADP·AlF₄-

Thick green (subunit) and yellow ('subunit) lines are for the complexed structure and thin black (subunit) and gray ('subunit) lines for the uncomplexed structure.

Mo $\Delta DP \Delta IF - (\Delta TP)$ Binding Site

Interaction between Fe protein and FeMo protein

Residues parcipitating in Fe protein/FeMo protein interactions have their Ca atoms highlighted as black spheres.

Signal transduction and electron transfer pathway in the nitrogenase complex.

A Model for Complexation between Fe Protein and FeMo Protein with Mg·ATP Binding uncomplexed complexed

A Model for Electron Transfer from Fe Protein to FeMo Protein with ATP Hydrolysis

Plausible Mechanism for Signal Transduction and Electron Transfer between Fe Protein and FeMo Protein

Electron Shuttle Gated by Dynamic Behavior of Fe Protein

FeMo Protein of Nitrogenase Complex

Nitrogenase Complex from *Azotobacter vinelandii*

> 2 2 subunits (~240 kD) subunit: 491 aa subunit: 522 aa

Containing 30Fe and 2Mo (two P-cluster and two M-cluster)

M-cluster

A Half of FeMo Protein from Av Nitrogenase Complex

Structure of P-Cluster (Reduced Form: P^N) in A. vinelandii MoFe Protein

Wrongly Proposed Structure for Reduced P-Cluster

This is NOT correct !!

from D. Voet "Biochemistry"

Structure of P-Cluster (Oxidized Form: POX) in A. vinelandii MoFe Protein

Structural Parameters for Pox and PN

C. Rees et al. Biochemistry 1997, 36, 1181

Table 3:	Metal-Metal a	nd Metal-Sulfu	r S1 Distances	in the $P^{\rm OX}$ and	P ^N States of the	e P-Cluster (in	Angstroms) ^a		
	Fel	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	Fe8	S1
Fe1		2.42	2.70	2.53	3.77	4.76	5.42	3.05	2.26
Fe2	2.43		2.76	2.54	4.59	5.02	6.64	4.46	2.34
	(+0.01)								
Fe3	2.71	2.78		2.59	5.37	6.83	7.61	5.57	3 97
	(+0.01)	(+0.02)						0107	5.57
Fe4	2.48	2.61	2.69		3.03	4.70	5.57	4.06	2.23
	(-0.05)	(+0.07)	(+0.10)						
Fe5	4.80	5.78	6.23	3.77		2.56	2.66	2.46	2 43
	(+1.03)	(+1.19)	(+0.86)	(+0.74)				2.10	2.10
Fe6	5.72	6.07	7.90	5.64	3.88		2.65	2.52	2 92
	(+0.94)	(+1.05)	(+1.07)	(+0.94)	(+1.32)				2.72
Fe7	5.43	6.76	7.69	5.57	2.76	2.77		2.62	4 31
	(+0.01)	(+0.12)	(+0.08)	(0.0)	(+0.10)	(+0.12)			
Fe8	2.96	4.37	5.51	3.89	3.41	3.22	2.72		2.45
	(+0.09)	(+0.11)	(-0.06)	(+0.17)	(+0.95)	(+0.70)	(± 0.10)		2
S1	2.27	2.30	4.06	2.26	3.81	3.86	4.42	2.32	
	(+0.01)	(-0.04)	(+0.09)	(+0.03)	(+1.38)	(+0.94)	(+0.11)	(-0.13)	

"Distances between pairs of metal atoms are indicated for the P^N state (upper right) and P^{OX} state (lower left). The distances are the average of the two P-clusters in the crystallographic asymmetric unit of the *A. vinelandii* MoFe-protein. The average deviation between crystallographically independent metal-metal distances is 0.05 Å, with a maximum of 0.11 Å for the Fe1-Fe6 pair in P^N. The numbers in parantheses in the lower left indicate the change in average distance upon oxidation of P^N to P^{OX}.

Structural Parameters for Pox and PN

C. Rees et al. *Biochemistry* 1997, 36, 1181

Bond Lengths for P^N and P^{OX} in Å

Bond	POX	PN	(POX - PN)
Fe1–Fe2	2.43	2.42	+0.01
Fe2–Fe3	2.78	2.76	+0.02
Fe3–Fe4	2.69	2.59	+0.10
Fe4–Fe5	3.77	3.03	+0.74
Fe5–Fe6	3.88	2.56	+1.32
Fe6–Fe7	2.77	2.65	+0.12
Fe7–Fe8	2.72	2.62	+0.10
Fe5–S1	3.81	2.43	+1.38
Fe6–S1	3.86	2.92(2.47)	+0.94

Redox Behavior of P-Cluster in Av MoFe Protein

Structure of M-Cluster (FeMo Cofactor) in A. vinelandii MoFe Protein

Structural Parameters for M^{OX} and M^{N}

Bond Lengths for M^N and M^{OX} in Å

Bond	MOX	MN	(M ^{OX} - M ^N)			
Fe1–Fe2	2.69	2.62	+0.07			
Fe2–Fe3	2.68	2.58	+0.10			
Fe3–Fe4	2.65	2.56	+0.09	OX	•	DN
Fe4–Fe5	2.55	2.55	+0.00		•	F ⁺
Fe5–Fe6	2.60	2.57	+0.03			
Fe6–Fe7	2.47	2.46	+0.01			
Fe7–Mo	2.54	2.63	-0.09			

C. Rees et al. *Biochemistry* 1997, 36, 1181

This is NOT Correct and Revised as Y = S

And Now the Structure has been Revised as In 2002

Reported by D. C. Rees et al in Science 2002, 297, 1696

Arrangement of P- and M-Clusters in Av FeMo Protein

multiple electron transfer and for substrate binding (TT).

What is the Role of Homocitrate in FeMo Cofactor Site ?

speculated by TT

Where is the Hydrogenase Active Site ?

CO inhibited the nitrogenase activity (NH_3 generation) but allowed the hydrogenase activity (H_2 generation).

Proposed Catalytic Cycle of Nitrogenase

Proposed by kinetic studies for *Klebsiella pneumoniae* nitrogenase. Thorneley and Lowe, *J. Biol. Inorg. Chem.*, 1996, 1, 576.

Bioinorganic Chemistry

FeMoCofactor of Av Nitrogenase

Synthetic Model Compounds for Nitrogenase

Structural Model

Design of a molecule that mimics the assumed structure of the enzyme active site. Such a model is considered totally successful if it carries out the desired function.

Functional Model

Synthesis of a chemically similar or dissimilar molecule that will mimic the desired function of the enzyme.

Double Cuboidal Iron-Sulfur Clusters

Bioinorganic Chemistry

Construction of Double Cubanes from Single Cuboidal Compounds

A Structural Model for P-Cluster of Nitrogenase

A Structural Model for P-Cluster of Nitrogenase

Functional Models for Nitrogenase

Dinitrogen Binding and Reduction Developed by Chatt and Hidai

Nature 1975 *Chem. Rev.* 1995

Chatt Cycle: Protonation of the coordinated dinitrogen *Not catalytic*

Bimetallic Functional Models for Nitrogenase

Y. Nishibayashi, S. Iwai, M. Hidai, Science, 1998, 279, 540

Protonolysis of Bridging Dinitrogen Ligands

Not catalytic

Bimetallic Dinitrogen Complex Containing Three Coordinate Iron Center

Dinitrogen Cleavage by a Three-Coordinate Molybdenum(III) Complex

$$[Mo^{III}] \longrightarrow N = N - [Mo^{III}] \longrightarrow [Mo^{VI}] = N \qquad N = [Mo^{VI}]$$

C. E. Laplaza, C. C. Cummins, *Science* 1995, 268, 861

Think Again Haber-Bosch Reaction in Relation to Nitrogenase

Nitrogenase

Haber-Bosch

Thanks for Your Attention!!

1) 2002 Nara Women's University
2)
3)

Bioinorganic Chemistry